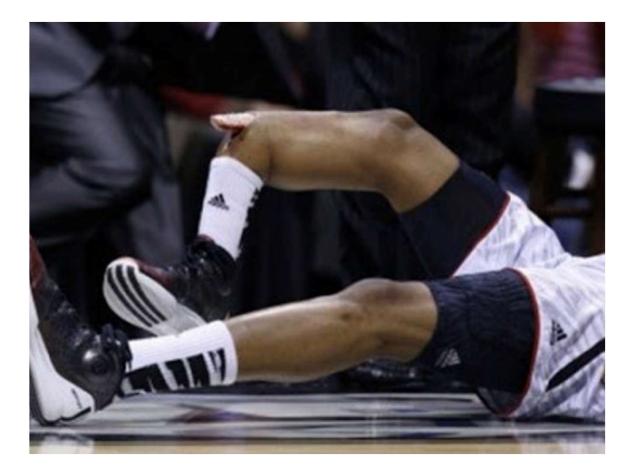


Sideline Management of Fractures and Dislocations

Mark LaBelle, MD Summit Orthopedics Sports Medicine

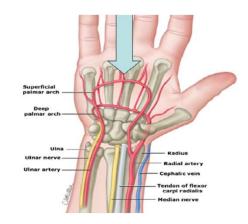
Disclosures

• No relevant disclosures or conflicts related to this topic


Objectives

- Understand and apply basic principles of fracture and dislocation management to injuries sustained on the playing field
- Review immobilization techniques for common fractures
- Learn and apply reduction techniques for common dislocations
- Review appropriate triage for sideline injuries based upon severity

FRACTURE BASICS


Initial Assessment

- Evaluate Limb Stay Calm!
 - You are the captain of the sideline and initial assessment. Take control of the situation
- Assess the skin
 - Take off socks/shoes/jerseys to assess
 - If open fracture, +/- sterile irrigation and dress with sterile dressing. Remove any grass or debris
 - Saline soaked gauze dressing of choice
- Neurovascular assessment
 - Sensation and motor
 - Pulses

Neurovascular Exam

- Upper Extremity
 - Motor: AIN, PIN, ulnar
 - Sensation radial, ulnar, median
 - Radial pulse
- Lower extremity
 - Motor dorsiflexion, plantar flexion, great toe extension
 - Sensation superficial and deep peroneal, sural, saphenous, tibial
 - Dorsalis pedis and posterior tibial pulse

Caption

Open Fractures

- Type I
 - < 1 cm, minimal contamination
- Type II
 - 1-10 cm, moderate muscle damage
- Type III (a/b/c)
 - high energy, will not see in athletics

Digit and Tibia most common

Why is it important?

- If open, instruct EMS to start antibiotics during transport
 - Studies demonstrate earlier time to antibiotics decreases infection rate
 - > 3 hours out from injury increases infection
- Sterile dressing prevents further contamination of the wound
- You may be the only one who assesses the skin and your report may drive the urgency of the athlete's care

Immobilize and Stabilize

- Stabilize Extremity
 - Traction for long bones (make limb straight!)
 - Splint or brace as indicated
- Immobilization decreases pain, minimizes soft tissue trauma, and prevents clot disruption
- Know your supplies!

Transport and Triage

- Immediate triage to hospital or ER
 - Open fractures, neurovascular compromise
 - Femur/tibia fractures, hip dislocations
 - Dislocations that you cannot reduce, grossly displaced fractures
 - Ankle fracture that need reduction
- Less urgent, may follow up in orthopedic urgent care or with provider within the next few days
 - Closed clavicle fractures
 - Closed fractures of the digits
 - Questionable fractures without deformity

OVERVIEW OF SPECIFIC INJURIES

Injury Overview

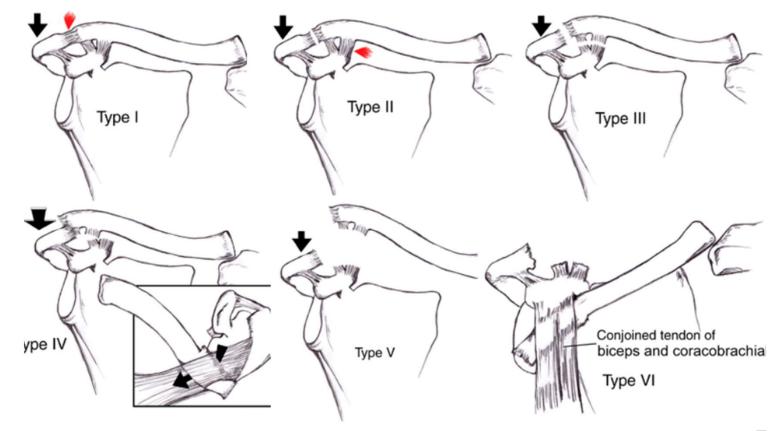
- Upper Extremity
 - Clavicle fractures
 - Shoulder dislocations
 - Elbow dislocation
 - Forearm/wrist fractures
 - Finger fractures and dislocations
- Lower Extremity
 - Hip dislocations
 - Femur and tibia fractures
 - Knee dislocations
 - Patella dislocations
 - Ankle fractures and dislocations

Clavicle Fractures

- Mechanism of injury
 - Direct blow to the lateral shoulder
 - Direct blow to the top of the shoulder
- Common in contact sports
 - Football
 - Hockey
 - Lacrosse
- More common in males

Clavicle Fractures

- History Felt a pop/crack on impact, gross deformity
- Midshaft clavicles fractures are the most common
- Evaluation
 - SKIN (evaluate for tenting more urgent)
 - Remove shoulder pads for assessment
 - Neurovascular
- Sideline Treatment
 - Sling immobilization
 - No return to play
- Triage
 - Clinic/xrays in the next day



Caption

Related: Shoulder Separation

- Same treatment/assessment as clavicle fracture
- Treatment Sling, may return to play if no deformity, non urgent evaluations

Shoulder Dislocations

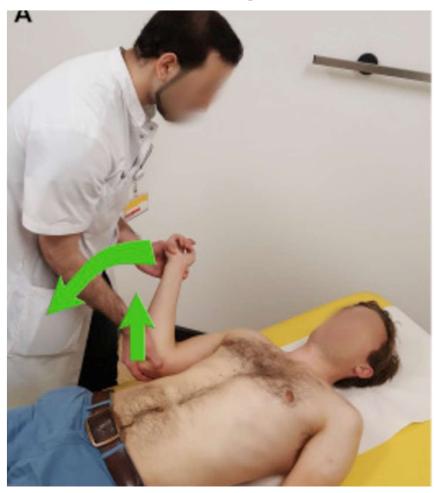
- Mechanism
 - Anterior directed force on the arm in maximal abduction and external rotation
- Risk factors for dislocation
 - Contact or overhead athlete
 - Male > Female
 - Age under 21 years old
- Sports
 - Football
 - Hockey
 - Rugby
 - Basketball
 - Lacrosse


Caption

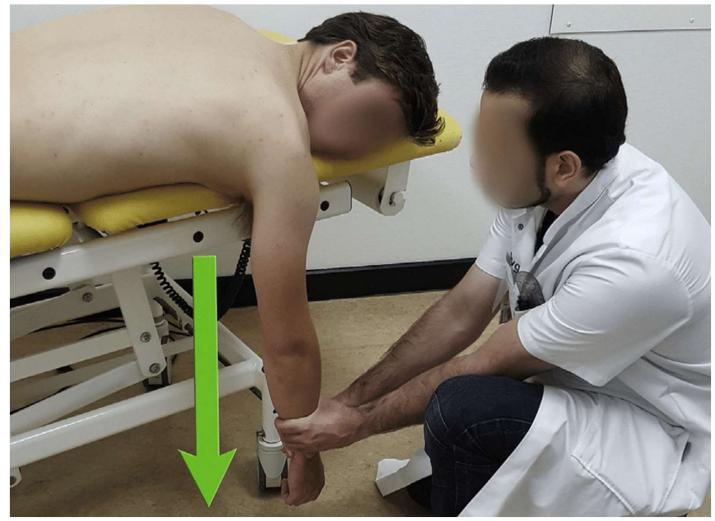
Shoulder Dislocations

- Physical Exam
 - Arm Dangling
 - Sulcus sign/dangling arm
 - Neurovascular status
- Prompt diagnosis is important

- On field reduction is indicated
 - Multiple techniques
 - Must do in first few minutes



• Traction with counter traction


• Traction with gentle internal and external rotation

• Prone arm hang, use weights if able!

Post Reduction

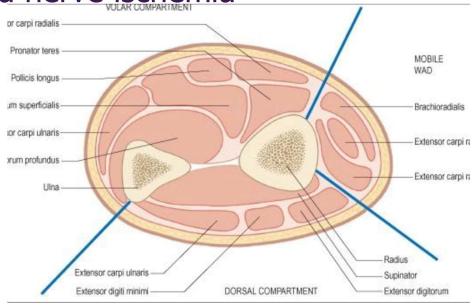
- Now that the shoulders reduced...what should I do?
- First time dislocations
 - Typically there is more swelling, pain, and dysfunction in first time dislocations
 - Lean towards no return to play
 - Triage: sling, follow up non urgently with provider
- Chronic dislocations
 - Typically there is less pain and swelling
 - May consider return to play pending sideline exam
 - Sulley brace if possible

Irreducible Shoulder

- After ~5 minutes of attempts, if unable to reduce shoulder should discontinue attempts
 - Muscles tighten, pain increases, and likelihood if overcoming these factors is low
- Patient must go to the ED (private vehicle is appropriate)
 - Keep patient NPO as may require conscious sedation
 - Sling for comfort

Elbow Dislocation

- Mechanism: Fall on outstretched hand with axial load, supination, and valgus force
- Common in patient ages 10-20 years old
- Second most common major joint dislocation after the shoulder
- Sports
 - Soccer
 - Lacrosse
 - Basketball
 - Football


- Physical exam
 - Higher association with neurovascular injury, close attention pre/post reduction
 - ~15% have an associated ipsilateral forearm fracture so examine the distal limb
 - Will see olecranon prominence posteriorly

Compartment Syndrome Risk

- What is compartment syndrome?
 - Rise in the pressures within the fascial compartments, can cause muscle and nerve ischemia
- Clinical diagnosis 5 Ps
 - Pain
 - Palor
 - Paresthesias
 - Pulseleness
 - Poikolothermia

Elbow Dislocation

How to Reduce a Dislocated Elbow

FIFA MEDICAL NETWORK

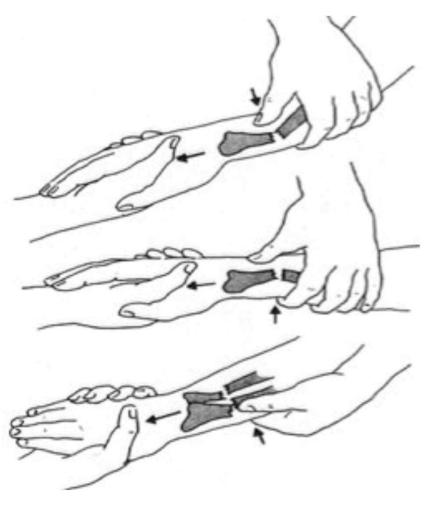
Immobilization

 Post reduction, place in a posterior mold long arm splint with arm in 90 degrees of flexion

- Reassess remainder of limb postareduction, including concomitant injuries and neurovascular status
- Up to 40% of elbow dislocations are associated with fractures around the elbow
 - Given this and compartment syndrome risk, it is my opinion that all elbow dislocations should NOT return to play and should be evaluated in the ED or by a provider same day or within 24 hours

Forearm and Wrist Fractures

- This is by far the most common pediatric fracture (<18 years old) and estimated to account for 40% of all pediatric fracture
- Mechanism is fall on outstretched hand
- Will see more often in the junior high and younger high school populations, much less common in skeletally mature patients
- Sports
 - Football
 - Soccer
 - Lacrosse
 - Basketball


Forearm and Wrist fracture

- Physical Exam
 - Angulation of the mid shaft forearm
 - These have a higher incidence of open fracture even at low energy
 - Often Type I open fracture (poke hole)
 - EASILY MISSED
 - 10-15% of ipsilateral elbow injury, examine the proximal limb as well

- Recreate deformity, pull traction, then flexion
- May perform per your comfort level, but only would recommend one try on the field

Splinting

- Recommended splint is a sugartong splint
- Elbow bent to 90 degrees, splint should extend from the palmar crease to the dorsal hand

- This should all be sent to the ED for xrays immediately.
- Often times formal reduction with sedation is needed
- Instruct athlete and family to remain NPO given sedation needs

Finger fractures/dislocations

- These come in a wide variety of patterns, so treatment needs to be tailored to the digit/injury
- Splint/immobilization types should be tailored to the digit involved
- Assessment:
 - High association with open fracture, so evaluate for wounds. Open fractures should be evaluated in ED
 - Closed fractures/dislocation can often be managed on the field

- Dislocations tend to be dorsal
- Same principles as forearm fractures
 - Extend first (recreate deformity)
 - Traction
 - Flexion
- I recommend trying reduction and may return to play with immobilization if successful (sport dependent)

Splint types

Thumb Spica

Buddy Tape

Ulnar gutter

- Return to play is variable and dependent on athletes comfort as well as sport and position
- Closed fractures without gross deformity and comfortable in immobilization may consider return to play
- When in doubt, keep athlete out and triage for non urgent evaluation with hand specialist in the next few days
- Remember to appropriately pad any splints prior to return to play for safety

THAT'S A WRAP ON THE UPPER EXTREMITY... ONTO THE LOWER EXTREMITY

Hip Dislocations

- Very rare, often occurs in younger kids (< 10 years old) but can occur in teenagers as well
- Mechanism is typically an axial load on a flexed knee, but can occur in lower energy if there's underlying dysplasia
- Posterior dislocation most common
- Recognize
 - Hip held in flexion and internal rotation
 - Shortened limb

Triage Immediately

- Do not attempt reduction on the field!
 - Reduction must be attempted with anesthesia
 - Reduction without anesthesia has a high risk of femoral neck fracture and will not be successful
- Recognize and transfer via EMS to nearest hospital
- Time to reduction is crucial
 - AVN risk associated with dislocation for longer than 6 hours
 - Devastating complication in a young patient

Femur and Tibia Fractures

- Long bone fractures of the lower extremity tend to be higher energy, blunt trauma
- Typically seen in contact sports only, such as football, rugby, lacrosse, hockey
- Assessment
 - Gross deformity of the thigh or shin
 - Assess for poke hole open fractures, particularly in tibia
 - Remember to check
 neurovascular status

Immobilization

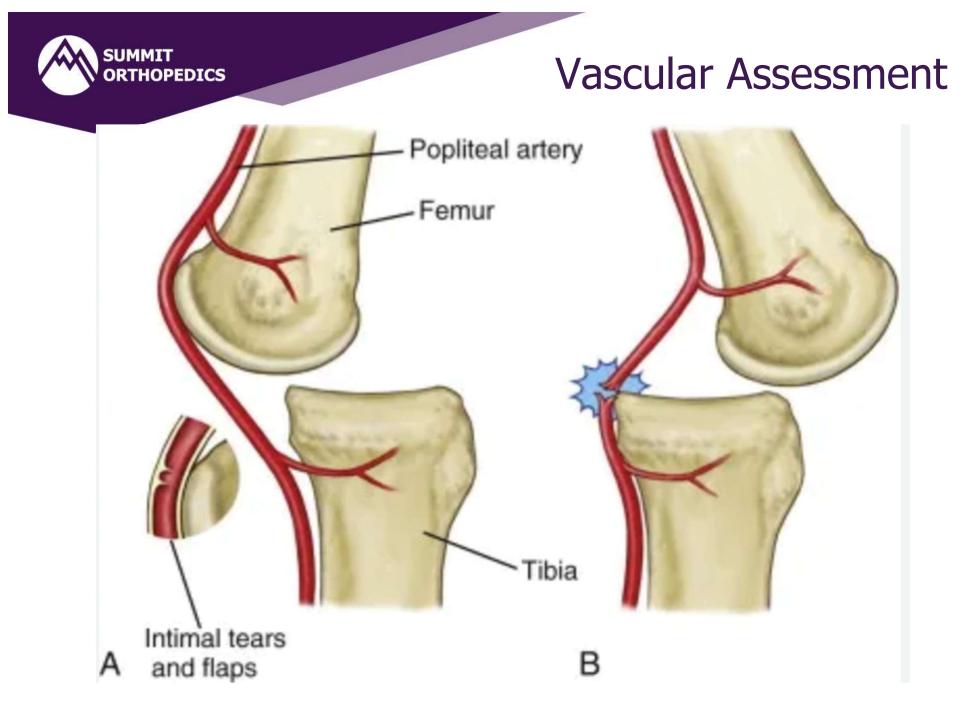
- Traction is best for long bone fractures, but no formal reduction is performed
- Tibia or femur fractures should be pulled straight and immobilized in long leg splint
- Vacuum splints most effective if available

Caption

- All femur and tibia fractures will require surgery within the next 24 hours
- Triage immediately via EMS to nearest trauma center or pediatric hospital
- Keep patient NPO
- Remember to assess for open fractures for tibia

Knee Dislocations

- Extremely rare but can be limb threatening!
- Mechanism often involves higher energy, such as direct impact with a helmet to the knee of planted foot. In rare occasions can be noncontact as well
- Knee often will reduce spontaneously or with minimal manipulation, and therefore you need to have a high suspicion based on injury mechanism!


Caption

Knee Dislocation

- Assessment
 - Need to be very thorough with vascular assessment
 - Feel for DP and PT pulses, compare symmetry to the other side
 - Feel for bruit behind the knee
 - Peroneal nerve palsy is common (25% of knee dislocations) which can point toward an occult dislocation
 - 60% are associated with fractures, often of the tibia plateau

Reduction

- In my opinion, reduction should be attempted immediately on the field
- TRACTION
- Pull tibia anteriorly for posterior dislocations
- Push tibia posteriorly for anterior dislocation
- Often the knee will spontaneously reduce in transit, rarely require formal reduction in the emergency room
- Immobilize in long leg splint or vacuum splint, similar to tibia/femur fractures

Reduction Technique

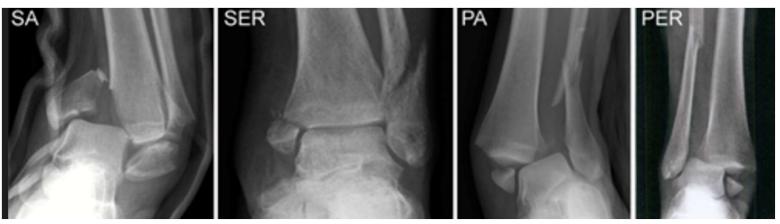
- Transport via EMS immediately to closes level 1 trauma center
- Keep NPO

Patella Dislocation

- Patella dislocations are nearly always lateral and occur with a noncontact twisting mechanism. Rarely due to direct blow
- Anatomic parameters and genetic factors predispose patients to dislocations (ligamentous laxity, patella alta, femoral ante version, external tibial torsion)
- Most common in teenagers and early 20s

Reduction Techniques

• Push patella medially while extending the knee



- Immobilize in a knee immobilizer and crutches
- As long as patella is reduced on the field, no need to send to the ER
- May follow up within the next week with orthopedic surgeon for further evaluation
- If unable to reduce on the field, transport to the ED. May transport in personal vehicle depending on patient's comfort

Ankle Fractures

- Ankle fractures are very common and are most often a rotation, twisting injury. Often are noncontact, but can be associated with a direct blow to a planted foot
- Most often in males between ages of 15-24
- 2% are open fractures, most commonly poke holes over the medial malleolus

Ankle fracture assessment

- Assessment
 - Skin for open fractures
 - Neurovascular status
 - Gross deformity/displacement. If there is significant displacement, consider a reduction on the field
 - Distinguish from a sprain due to tenderness over the malleoli, inability to weight bear

Reduction

- Reduction is indicated only if there is gross deformity and associated dislocation
- My preferred method
 - Flex the knee
 - Gentle traction, then rotate the foot and lift the heel
 - Use the big toe as a reference, should point upward in line with patella
 - Have assistant hold the leg while you splint
- Recommend one quick reduction maneuver then short leg splint

Reduction

Splinting and Triage

commend short leg splint with side slaps y deciphering between sprain, walking boot is

bearing

p in the next few days with orthopedic surgeon ed to be sent to ER same day

TIME TO WRAP UP...

Summary and Final Thoughts

- Stay calm, take control, and assess the skin and neurovascular status
- Perform reductions for dislocations as you feel comfortable
- Know your supplies and splint options. Apply immobilization for fractures as appropriate
- Triage according to injury severity

QUESTIONS?